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CHARACTERS: 0<p <1
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ABSTRACT

Let G be an infinite compact abelian group, & a Borel measure on G with
spectrum E, and 0 < p < 1. We show that if x is not absolutely continuous with
respect to Haar measure, then LE(G), the closure in L?(G) of the E-
trigonometric polynomials, does not have enough continuous linear functionals
to separate points. If o is actually singular, then L%Z(G) does not have any
nontrivial continuous linear functionals at all. Our methods recover the classical
F. and M. Riesz theorem, and a related several variable result of Bochner; they
reveal the existence of small sets of characters that span L”(T), where T is the
unit circle; and they show that the H? spaces of the “‘big disc algebra” have
one-dimensional dual.

Introduction

If G is an infinite compact abelian group and 0 < p < 1, then the linear metric
space L”(G) has no nontrivial continuous linear functionals. This suggests the
following problem in harmonic analysis: for which subsets E of the dual group of
G does LE(G), the closure in L?(G) of the E-trigonometric polynomials on G, fail
to have enough continuous linear functionals to separate points? In this paper we
show that it is sufficient for E to be the spectrum of a measure on G that is not
absolutely continuous with respect to Haar measure. Equivalently: if L%(G) has
enough continuous linear functionals to separate points for some 0<p <1, then
every E-spectral measure on G is absolutely continuous (here ‘““measure” means
“finite, regular Borel measure”).

This exhibits the classical F. and M. Riesz theorem, which states that every
measure on the circle with spectrum contained in the positive integers must be
absolutely continuous, as a consequence of the fact that when 0<p <1 the
L*-closure of the space of trigonometric polynomials with positive frequencies
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still has enough continuous linear functionals to separate points. In fact our
methods will provide an even simpler proof, using ideas which lead to a related
theorem of Bochner about measures on the torus.

Along the way it is necessary to prove the following result, which is actually
our main theorem: if E is the spectrum of a measure on G that is singular with
respect to Haar measure, then L%G) has no nontrivial continuous linear
functional for 0 <p <1. This result is of independent interest. It yields the
existence of sets of integers having density zero for which the corresponding
exponentials span a subset of L?(T) with trivial dual; it shows that the H” spaces
of the “big disc algebra” have one dimensional dual when 0<p <1, and it
explains a recent theorem of de Leeuw [4, theor. 3.1, p. 113] which asserts that if
E is the spectrum of a measure on G that is singular with respect to Haar
measure, then every co-finite subset of E spans a dense subspace of L§(G) for
0<p <1. We use de Leeuw’s result in turn to show that the ‘‘modification sets”
introduced by Rudin [13], [14] span dense subspaces of L?(G), and this provides
sets of integers having density zero for which the corresponding characters (i.e.
exponentials) span a dense subspace of L°(T) for all 0<p <1. In fact de
Leeuw’s paper [4] was the starting point of this investigation, and his methods
play an important role in what follows.

Of course none of this makes sense for p = 1, and all of it would be trivial if
there were no infinite sets E for which L&(G) had enough continuous linear
functionals to separate points. Fortunately, however, every infinite compact
abelian group has such sets E in its dual. For example, when G =T (the circle
group) it is well known that if E = (= n,) where (n) is a sequence of positive
integers with mc.,/n. >q > 1, then on the E-trigonometric polynomials the L?
and L? topologies coincide (15, Vol. I, theor. 8.4, p. 213]. More generally the
same is true when G is a compact abelian group and E is a Sidon set in its dual
group [12, theor. 5.7.7, p. 128]. Since every compact abelian group has an infinite
Sidon set in its dual [12, sec. 5.7.6, p. 126], it follows that unless G is finite there
will always be infinite sets E for which the L?-topology on L% G) is locally
convex for 0 < p < 1, hence L% G) will have enough continuous linear function-
als to separate points.

The paper is organized into five sections. Basic notations, definitions, and
preliminary results occupy the first, singular measures and trivial duals the
second, and H” spaces of the big disc algebra the third. The fourth section
contains de Leeuw’s result, along with its application to modification sets; and
the paper concludes with our generalization of the F. and M. Riesz theorem.

It is a pleasure to thank Professors John D. Pesek of Michigan State
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University, and Paul S. Muhly of the University of Iowa for many stimulating
conversations about this material. In particular it was Muhly who suggested the
applications to H” spaces of the big disc algebra. 1 also want to thank the
Department of Mathematics at the University of Wisconsin—-Madison for its
hospitality while this paper was being written.

1. Preliminaries

In this paper G is always a compact abelian group with normalized Haar
measure m and dual group I'. We generally follow the notation and terminology
of Rudin’s book [12]; in particular we write (x, a) instead of a(x) when x € G
and @ €T'; dx instead of dm(x); and L?(G) instead of L?(m). In contrast to
[12], however, the index p always lies strictly between 0 and 1.

The space of finite, regular, complex valued Borel measures on G is denoted
by M(G), and its elements simply called ‘““measures’. The subspace consisting of
measures that are singular with respect to m is denoted by M,(G). Henceforth
the terms ‘‘absolutely continuous” and “‘singular’” are always intended with
respect to m.

If w« € M(G) then 4 denotes the Fourier-Stieltjes transform of wu:

p@)= [(-x@)dutx) (@ inT),
and the spectrum of u is the support of 4:
specp ={a €T : d(a) # 0}.

If E is a subset of I' and spec u CE we say u is an E-spectral measure. These
notions are transferred to functions in L'(G) by identifying the function f with
the measure f(x)dx.

We will be particularly concerned with finite linear combinations of charac-
ters, usually called trigonometric polynomials on G. A finite linear combination
of characters taken from a fixed subset E of I' is called an E-trigonometric
polynomial, and the collection of all E -trigonometric polynomials is denoted by
T:(G). In other words, T¢(G) is the linear span of E.

L?(G) is given its usual topology here: the one induced by the metric

d(f,g)=Ilf - gl where
Ifle = j;fm;pdx.

This metric turns L?(G) into a complete linear topological space which, unless G
is finite, is not locally convex, and in fact has no nontrivial continuous linear
functionals [3].
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For E a subset of I' we denote the closure of T(G) in L?(G) by LEG). So

% G) is the closed linear subspace of L?(G) spanned by the characters E.

It will be convenient to use the following terminology from functional analysis.
If X is a linear topological space then the dual of X is the collection of
continuous linear functionals on X. It is denoted by X', and should not be
confused with the dual group of G. We say a subset § of X’ separates the points of
X if for every nonzero x in X there exists A in S with A(x)# 0. If X' separates
the points of X we say X has separating dual. If X' = {0} we say X has trivial
dual.

Finally we require the following two results. The first is a generalization due to
Jean Boclé of a standard differentiation theorem, while the second is a well
known result. For completeness we include proofs of both.

LemMma 1.1 [1, theor. 1I, p. 17). Let & denote the collection of symmetric
neighborhoods of 0 in G, directed downward by inclusion. For V in & let
ky = I,/m(V), where I, is the characteristic function of V(=1o0n V and 0 off V).
Ifu € M,(G) thenthe net (ky * u : V € &) converges in Haar measure to zero.

Proor. Since | ky *u | = ky *| u | we may without loss of generality take u
to be a positive measure. Suppose ¢ and a are >0. By the regularity and
singularity of u there exist sets K CU CG with K compact, U open, and

p(U)=p(G)=|ul,
w(U\K)<ea/2,
mU)<e /2.

Define A in M{(G) by A(B)=u(BNK) for B a Borel subset of G. Then
i = A + 0 where A is concentrated on K and 8(G)<ea/2.

Choose V() in y Such that K+ V()CU. The Symmetry Of V()(V()': - V())
implies that {V,+ )N K = whenever t& U, hence
A(V+1) _pdV+HNK)
m(V+1t) m{(V+1t)
vanishes off U whenever V C V,. So for V C V, we have kv *u = ky * 0 off U,
hence

ky *A(t)=

J' kv*,u(x)dx=f ky*6(x)dx
G\U G\U

=lkv]ilo]

=call.
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By Chebyshev’s inequality:
mi{lky*pu >a}N(G\U))=¢/2.
So given &, a >0 there exists V, in & such that
mikvxp>al=e2+mU)<e
whenever V CV,. This completes the proof.

LemMa 1.2 (cf. [10, p. 30])). If Vis a closed, translation invariant subspace of
LY(G)andh € L'(G), thenh »f € V forevery fin V. In particular spec f CV for
every fin V.

Proor. By the Hahn-Banach and Riesz representation theorems it is enough
to show that if g in L™(G) annihilates V, then it annihilates h * V. So suppose
g€ L™(G) and

[ g xyax =0

for all f in V. Then using the translation invariance of V and Fubini’s Theorem:
0= [{]1-nswasfreay
- [{[re=nrmras}seas

= [Fen@g o dx

which is the desired result.
In particular, taking h(x)=(x,«) for @ ET" we have

fl@ya=h=*feV,

so if a € specf, then a € V. This completes the proof.

2. Singular measures and trivial duals

Recall that G is a compact abelian group, and that 0 < p < 1. This section is
devoted to the proof and first consequences of the following result.

THeorem 2.1. If u E M(G), E =specp, and 0<p <1, then LYG) has
trivial dual.

Proor. Suppose ® is a continuous linear functional on L G). Then @ is
L'-continuous on the dense subspace Te(G) since the L'-topology is stronger
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thereon than the L?-topology. By the Riesz and Hahn-Banach theorems there
exists ¢ in L™(G) such that for each f in Te(G):

eR) o) = [ ()6 (- 2)dx = 3 (@) (@).

So in order to show that @ vanishes identically on L%(G) it is enough to check
that ¢(a)=0 for each « in E.

This will be accomplished by applying @ to a net of test functions obtained by
convolving the singular measure u with the approximate identity (kv : V € &)
that was considered in Lemma 1.1. Let f, = kv * . Then fy € L (G)CL¥G),

2.2) I li=lkv illwli=lul (Ve),

and f, — 0 in Haar measure by Lemma 1.1.

Now fix a in E and recall that our goal is to show that <!3(a) = 0. Since the net
of measures (k.dm : V € &) converges in the weak star topology of M(G) to
the unit mass at the identity of G, we have kv(a)— 1. Since both the topology of
the complex plane and the topology of convergence in Haar measure on G are
metrizable, we can choose a sequence (V,) from & so that simultaneously
kv (a)—1 and g, = fv, =0 in measure. Now according to (2.2) the sequence
(| g I7) is uniformly integrable, and we have just seen that it converges to zero in
measure. So Vitali’s Convergence Theorem [7, theor. C, p. 108] shows that (g.)
converges to zero in L”(G) (cf. [4, theor. 3.1, p. 113] where this is also the crucial
step in the proof). The translation invariance of Haar measure insures that the
same is true for the sequence of translates (g’) for each ¢ in G, where

g¥(x)=g.(x +1) (x in G).
We finish the proof by analysing the functions
F.()=®() (tin G),

recalling that since g, € L% G), the same is true for gi’. First of all, each F, is
continuous on G, since translation of L? functions takes G continuously into
L?(G), and @ is continuous. Next, for ¢t in G:

[E.l=l® gl =@l g =] fa]

for each n, so the sequence (F,) is uniformly bounded on G. Finally, F,(t)—0
for each t in G since, as we have just noted, g%’ — 0 in L?(G) for each ¢. Thus
(F.) is a uniformly bounded sequence of continuous functions on G that
converges pointwise to zero, so by the bounded convergence theorem we have
F,(a)—0. Now a quick calculation shows that
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Fo=kv,*p*¢
so recalling that ky,(a)— 1:

0= lim kv, (@) i (@) (@) = i (@) ()

which implies that ¢(a) =0, since a € E = spec u. This completes the proof.

Note that when p is the unit mass at the identity of G, then specp =1" and we
recover the fact mentioned in the Introduction that L?(G) = {0} whenever G is
infinite. This result was first proved for the L? spaces of general non-atomic
measures by M. M. Day [3].

We next illustrate how Theorem 2.1 can be used to produce examples of
rather “thin” sets E for which L%(G) has trivial dual. Recall that T denotes the
circle group, and that the dual of T is identified with thé group Z of integers by
associating n € Z with the character w > 0" (0w €T).

CoRrOLLARY 2.2. There exist subsets E of Z having density zero for which
&(T) has trivial dual (0<p <1).

ProoF. We use Riesz products to produce measures u € M,(T) for which
E = spec u has density zero. Suppose (n,) is a sequence of positive integers with
inf n..1/ e > 3. Then it is well known {15, Vol. I, ch. 5, sec. 7] that the measures

du.(t)= [[ (1+cosmt)dt2a

converge in the weak star topology of M(T) to a singular measure x whose
spectrum consists of all finite sums 2 6,n. where 6, =0, 1, or — 1. It is easy to
check that this set has density zero, so the proof is complete.

For the problems we are considering a measure of thinness that is perhaps
better than ‘“‘density zero” is ag(N) = the maximum number of elements E has
in common with an arithmetic progression of length N. Clearly ag(N)= N; and
E has density zero if az(N) = o(N), but not conversely. Rudin [11, theor. 3.8, p.
215] shows that given any function w(N) 1 =, the sequence (n) in the proof of
Corollary 2.2 can be chosen so that as(N)= w(N). Thus the statement of
Corollary 2.2 can be refined to read: given w(N) 1 « there is a subset E of Z such
that ag(N)= w(N), yet L¥T) has trivial dual for all 0 <p <1.

3. H? spaces of the big disc algebra

In this section we apply Theorem 2.1 to a situation that arises in the theory of
uniform algebras. We continue to follow the notation and terminology of Rudin
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{12,ch. 8]. In particular recall that an abelian group I' is ordered if there is a linear
order = on it such that o = B impliesa + A =+ A forall A in ' [12, sec. 8.1,
p. 193]. The collection of non-negative elements of I' will be denoted by I'*. If G
is a compact abelian group whose dual I' is ordered, then we say the I'"-
trigonometric polynomials are of analytic type, and we write H?(G) instead of
L{«(G). Note that these definitions depend in an essential way on the order
chosen for I', and that this is suppressed in the notation. If we take G =T and
order its dual group Z in the usual way, then H?(G) is the space of boundary
functions of the usual Hardy space H”, and is in fact isometrically isomorphic to
H” [5, theor. 3.3, p. 36].
We will need the following result from the theory of uniform algebras.

Lemma 3.1 [12, theor. 8.4, p. 206). If G is a compact abelian group with
ordered dual, and f is a trigonometric polynomial on G of analytic type, then

|FO)=exp [ toglf(x)  dx.
This lemma and the arithmetic-geometric mean inequality yield:

CoroLLARY 3.2 [6, theor. 3.1, p. 124]. If G and f are as above, then

o=l
for all p >0.

For the remainder of this section we concentrate on the following special case,
which is described in detail in [6, ch. VII]. We take I" to be a dense subgroup of
the real line R, let I'; denote I in the discrete topology, and let G be the dual of
I's. So G is a compact, connected abelian group with character group I',. We give
I's the order it inherits from R. The uniform closure of the trigonometric
polynomials of analytic type on G is an important function algebra called the
“big disc algebra”, and H”(G) can be regarded as the L -closure of the big disc
algebra. We are going to show that the dual space of H?(G) is one dimensional,
in sharp contrast to the case G = T. This follows from Corollary 3.2 and the
following result.

THEOREM 3.3. If E is a subset of I that is relatively open in the topology of the
real line, then L%(G) has trivial dual for 0 <p <1.

Proor. According to Theorem 2.1 it is enough to find p € M,(G) with
spec . = E. This construction is completely standard, but to keep things
reasonably self-contained we will give it in detail.
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The idea is to transfer measures from R to G by means of the following
homomorphism. For s in R define e, in G (= the dual of I';, recall) by

(3.1) (a,e,)=e" (a in T),
and define h : R > G by

(3.2) h(s)=e, (s in R).

Clearly h is a continuous homomorphism of R into G, and is one-to-one because
I' is dense in R; but h is not bicontinuous as a map from R onto h(R).
Nevertheless h(R) is sigma-compact, hence a Borel subset of G.

If u is a finite Borel measure on R, let ug = ph ', that is,

na(B)=u{h™'(B)}

for each Borel subset B of G. Then uc € M(G) and a straightforward

calculation employing (3.1), (3.2), and the change of variable formula [7, theor.
C, p. 163] yields

(3.3) fic(a)=p(a) (a in T),

where on the left side of (3.3) we are viewing « as a character on G, and on the
right side as a real number.

The assumption on E is that E =I'N U where U is an open subset of R.
Choose any finite Borel measure ¢ on R with

specu ={t in R:pg(t)#0}=U.

Then spec ue = E by (3.3), so we will be done if we can show that ug is singular
with respect to the Haar measure m on G. Since u is concentrated on h(R) it is
enough to show that m{h(R)}=0.

This is easy. If K, is the closed interval in R between n and n + 1, then h(K,)
is a compact subset of G, and

h(R)= ..Ler h(K.).
So we need only show that m {h(K.)} = 0 for each n. Suppose not. Then since h
is a homomorphism and the K,'s are all translates of each other, so are the
h(K.)’s, hence they all have the same positive Haar measure. But the h(K,)’s
are pairwise disjoint; because the K, ’s are, and h is one-to-one. So m{h(R)} =
«, which contradicts the fact that m(G) = 1. This completes the proof.
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CoroLLARY 3.4 For 0<p <1 the dual space of H”(G) has dimension 1.

Proof. It is enough to prove the result with T* = T+(G) in place of H"(G).
Let

M(f)=fO) (f in TY).

By Corollary 3.2 the linear functional A, is L”-continuous on T". Suppose A is
any L”-continuous linear functional on T~. Since E = I'"\{0} is relatively open
in I', Theorem 3.3 asserts that L {(G) has trivial dual: in particular A must vanish
on the dense subspace Te(G). But Te(G) is the null space of Ay, so A is a scalar
multiple of Ay, and the proof is complete.

A similar result holds when I'" is replaced by a closed interval in I', and
suggests an interesting problem.

CoroLLARY 3.5. Suppose a,b €T with a <b. Let E =T N[a,b]. Then the
dual space of LY G) has dimension two when () <p <1.

Proor. For f in Te(G) let
Ao(f)=f(a) and A(f)=f(b).

We claim that both these linear functionals are L”-continuous. For given f in
Te(G) define F in T,+(G) by

F(x)=(xb)f(x) (x in G),

where b is now viewed as a character on G. Using Corollary 3.2 on the analytic
polynomial F:

WD =1fB) =1 FOI=[Fl, =1fl,

which establishes the continuity of A,. A similar argument works for A..
Let E, = E\{a, b}. Then E,is relatively open in I", so Theorem 3.3 implies that

Te(G) = ker A, Nker A,

has trivial dual in the L?-topology. Thus any L*-continuous linear functional on
T:(G) must vanish on the null spaces of both A, and A,, and must therefore be a
linear combination of these two functionals. This completes the proof.

It would be of interest to know if a similar result holds when E is a finite
disjoint union of closed intervals in I'. If E, is the interior of such an E (relative
to I'), then Theorem 3.3 insures that L g, has trivial dual, so the argument given
above shows that the dimension of [L%(G)]) is = twice the number of these
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intervals. However it is not clear that the endpoints of these intervals induce
continuous linear functionals on L&(G), even when there are only two intervals,

4. Modification sets span L’ (G)

In this section we use Theorem 2.1 to prove the following theorem of de
Leeuw, and we use de Leeuw’s result to show that rather thin sets of characters
can span dense linear subspaces of L7(G). Here G is any compact abelian

group.

TueoreM 4.1 [4, theor. 3.1, p. 113].  Suppose u € M,(G), E = spec u, and F
is a finite subset of E. Then E\F spans a dense linear subspace of L% G) for all
0<p<l.

Proor. Theorem 2.1 asserts that T¢(G) has no nontrivial L?-continuous
linear functional, so the same is true of the quotient space T (G)/X, where X is
the L?-closure of Te\r(G) in Te(G). We want to show that X = Te(G). In any
case X has finite codimension in T¢(G), so if it is not the whole space, then
T=(G)/X is a nontrivial finite dimensional Hausdorff linear topological space,
hence is isomorphic to the complex Euclidean space C" for some n >0 [8, theor.
7.3, p. 59], and therefore has a nontrivial continuous linear functional. But this is
impossible, so X = T¢(G), and the proof is complete.

A subset M of I' is called a modification set if for every f in L'(G) there exists
p in M,(G) such that & = f off M. That is, M is a modification set if every f in
L'(G) can be converted into a singular measure by modifying its Fourier
transform only on M. Rudin [13], [14] has proved that rather small modification
sets exist in many groups. In particular he has found modification sets in Z of
density zero [14].

CoroLLary 4.2. If M CI is a modification set then M spans a dense linear
subspace of L7(G) for all 0 <p <1.

Proor. It is enough to show that each character not already in M belongs to
L{{G). Fix @ in I'\M and choose u in M,(G) so that g =& off M; hence
a Especu CM U{a}. Letting E = spec u we have from Theorem 4.1:

@ € LYG) = L%.(G)CLIAG),

which completes the proof.
This result, along with Rudin’s construction of modification sets in Z of density
zero yields:
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CoroLLARY 4.3. There exist subsets E = {n.} of Z having density zero for
which the exponentials {e"™°} span a dense linear subspace of L*(T) for all
0<p<l.

ReMAaRks. (a) This last corollary, in some ways a disturbing complement to
Corollary 2.2, shows that L&(G) may have trivial dual simply because it
coincides with L*(G), even if E is rather small. This raises a general question:
given a set E of characters, what is I' N L% G)? We will say more about this
problem in the next section. In general it appears to be quite difficult.

(b) There is also a related question: if E is the spectrum of a singular measure,
is LY G) linearly homeomorphic with L*(G)?

5. Separating duals and absolutely continuous measures

In this section we use Theorem 2.1 and de Leeuw’s original proof of Theorem
4.1 to generalize the F. and M. Riesz theorem. The following notation will be
convenient: for ECI and 0<p <1, let [E], = LYG)NT. Note that:

(@) EC[E].
(5.1) (b) If F=[E), then LXG)=L%G).
(C) [El N E2]p C[El]p N [EZLJ-

In this notation Theorem 4.1 asserts that [E], = [E\F], whenever E is the
spectrum of a singular measure and F is a finite subset of E; and Corollary 4.2
shows that [M], =T for every modification set M.

For u in M(G) let u, and u, be respectively the absolutely continuous and
singular parts of u with respect to the Haar measure m. The main result of this
section is:

THEOREM 5.1.  Ifu € M(G) then [spec u |, contains both spec u, and spec p,
for all 0<p <1.

Proor. (cf. de Leeuw [4, theor. 3.1, p. 113]. We use the approximate identity
(kv : V € &) that appeared in Lemma 1.1 and in the proof of Theorem 2.1. A
routine argument shows that ky *f— f in L'(G) for each f in L'(G).

Let E = spec u and write du.(x) = f(x)dx where f € L'(G). Then as in the
proof of Theorem 2.1 there is a sequence (V,) in & such that

(5-2) lev, *f=fli—0

and
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(5.3) kv, * s ll, —0.

Thus the sequence kv, * u converges to f in L?(G). Since each kv, * u belongs
to L {G), it also belongs to L% G), hence so does f.

Let {f) denote the closure in L'(G) of the linear span of the translates of f.
Then (f) is a closed, translation invariant subspace of L '(G) which contains f, so
by Lemma 1.2 it also contains spec f = spec .. Since f € L?(G) so is every
translate of f, hence (f) CL%(G). Thus spec u. lies in LEG), and therefore in
[E],- Since both 4 and g. vanish outside [E], so does g, = 4 — f., and this
completes the proof.

An immediate consequence of this result and Theorem 2.1 is the following,
which is the ‘‘generalized F. and M. Riesz theorem” mentioned in the
Introduction.

CorOLLARY 5.2. Suppose E CU, 0<p <1, and F=[E],. If Te(G) has
enough L7 -continuous linear functionals to separate points, then every E -spectral
measure on G is absolutely continuous.

Proor. If p isan E-spectral measure on G that is not absolutely continuous,
then by Theorem 5.1

S =spec p, Clspecu], C[E], = F

so T.(G)CT:(G). By Theorem 2.1 the space Ts(G) has no non-trivial L”-
continuous linear functionals, so each L?-continuous linear functional on T¢(G)
must vanish on Ts(G). Since the latter space is non-trivial, it follows that T:(G)
does not have enough L”-continuous linear functionals to separate points. This
completes the proof.

REmMaRrks. (a) Corollary 5.2 clearly implies that if L 2(G) has separating dual
for some 0 <<p <1, then every E-spectral measure on G is absolutely continuous.
For example when G =T and E is the non-negative integers, we noted in
section 3 that L%(T) is isometrically isomorphic to the Hardy space H” of the
open unit disc. Since H” has separating dual [5, ch. 7, p. 118], so does L ¥(T), and
we have a proof of the F. and M. Riesz theorem. In a few moments we will give a
simpler proof in which T (T) is shown directly to have enough L?-continuous
linear functionals to separate points, and the existence of H” is completely
ignored.

(b) We do not know if LE(G) must have separating dual whenever Tz (G),
taken in the L”-topology, does. More generally we do not know if the dual of a
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topological vector space must separate points whenever it separates the points of
a dense subspace.

Corollary 5.2 raises once again the problem mentioned in Remark (a) of
section 4. Restated in the notation of this section it is: given E CI" and 0 < p <1,
find [E],.- Not much seems to be known about this problem other than the few
results we have already mentioned, and the following one which we need to
efficiently recover the F. and M. Riesz, and Bochner theorems.

Lemma 5.3. If G is a compact abelian group with ordered dual T', then
[T7), =T for every 0<p <1.

ProoF. Suppose @ <0 and f is a trigonometric polynomial on G of analytic
type. Then

F(x)=(x —a)f(x)-1

is also a trigonometric polynomial of analytic type, with F(0)= —1 and
|F|=|f—a| on G. These observations, along with Corollary 3.2, yield

la—fll, =IFll, z| F©)| =1
so dist (o, H?(G)) = 1. In particular,
aZ H*(G)NT =[],

and the proof is complete.

We next give a sufficient condition for T (G) to have enough L”-continuous
linear functionals to separate points. In what follows, E — « is the translate of
the set E CI' by the character «, not the set-theoretic difference.

LemMa 5.4.  Suppose G is a compact abelian group with ordered dual I, and E
is a subset of T'* such that E — o has at most finitely many negative elements for
each a in E. Then Te(G) has enough L”-continuous linear functionals to separate
points for each 0<p <1.

ProoF. According to Corollary 3.2 the linear functional

X(f)=10) (fin T(G))

is L?-continuous on T:(G), so it is also L?-continuous on Teur(G) for each
finite subset F of I, since the latter space contains the former as a subspace of
finite codimension. In particular A, is L”-continuous on T¢ (G ), say with norm
M,. Suppose f € T:(G). Then
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F(x)=(x, —a)f(x) (x in G)
is an (E — a)-trigonometric polynomial, hence
[fe)|=FO)|= M| Fll, = M. | f]},
which shows that the linear functional

L(f)=fl@) (fin T(G))

is L?-continuous on T¢(G) for each « in E. Since these functionals separate the
points of T¢(G), the proof is complete.

The F. and M. Riesz theorem now follows immediately from the last three
results.

CoroLLArY 5.5 (F. and M. Riesz [9], Rudin [12, theor. 8.2.1, p. 198], Duren
[5, theor. 3.8, p. 41]). If w € M(T) and 4(n)=0 for all n <0, then pn is
absolutely continuous with respect to Lebesgue measure on T.

Proor. Take G =T, m = normalized Lebesgue measure on T, I' =Z, and
E =T"=12"in Lemmas 5.3 and 5.4. It follows from these lemmas that [E], = E
and T:(T) has enough L”-continuous linear functionals to separate points for
each 0 <p < 1. This, along with Corollary 5.2, completes the proof.

Remark. In addition to Theorem 5.1 the main element in this proof of the F.
and M. Riesz theorem is Lemma 3.1, which is a non-trivial result in the theory of
function algebras. However for the special case just considered it is an
immediate consequence of the subharmonicity of | f(z)[F where f is a polynomial
in the complex variable z.

These ideas also provide another proof of a theorem of Bochner. This time the
generality of Lemma 3.1 is used in a more essential way. In what follows the
ordered pair (m,n) € Z’ is identified with the character (¢, 7)— £™n" on T

CoroLLARY 5.6 [2), [12, theor. 8.2.5, p. 201]. Suppose S is a plane sector of
angular opening less than w radians. If u € M(T") and specu CS, then p is
absolutely continuous with respect to Lebesgue measure on T°.

Proor. Without loss of generality we may assume that S has vertex at the
origin. Since the sides of S make an angle of less than # radians we have
S =11, N Il, where I1, and Il; are half-planes bounded by the lines containing
the sides of S. Let E, I',, and I'; be the intersections with Z* of S, I1,, and i,
respectively. Then T, is the set of positive elements for an ordering of Z* (see
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[12, sec. 8.1]), so Lemma 5.3 insures that [T, ], = .. The same is true for I';5, and
since E =T, NF, it follows from (5.1) that

EC[E), C[I.], N[le), =T. NI =E

that is, [E], = E.

So we need only show that T (T?) has enough L”-continuous linear function-
als to separate points, by the above results and Corollary 5.2. To see this,
consider Z° in the ordering induced by any half-plane which contains S \{0} in its
interior and whose boundary is a line of irrational slope through the origin. It is
geometrically clear that for such an ordering the set E obeys the hypotheses of
Lemma 5.4, and this completes the proof.

REMARKS. (a)In [11, theor. 5.7) Rudin generalizes the F. and M. Riesz
theorem as follows: if E is the union of a A(1) set with the positive integers, then
every E-spectral measure on the circle is absolutely continuous. We do not know if
this result can be obtained from Corollary 5.2. That is, we do not know if the
space of [E],-trigonometric polynomials has enough L?-continuous linear
functionals to separate points.

(b) Finally it should be observed that the results of this paper extend to
certain Orlicz—type spaces, with exactly the same proofs. More precisely,
suppose ¢ is a non-negative, continuous, strictly increasing concave function on
[0,%) which vanishes only at the origin. Then ¢ is automatically subadditive, and
the space L*(G) consisting of (equivalence classes of) m-measurable complex
valued functions f on G with

I£1= [ @ r1dm <=

is a complete linear topological space in the metric

d(f.g)=llf-zl.

Of course L?(G) is just the case ¢(t)=1" (0 <p <1). Suppose ¢ is strongly
concave, that is, ¢(t)/t — 0 as t = . Then Theorems 2.1, 3.3, 4.1, and Corollary
4.2 all hold with LY G) replacing LY G); while Theorem 5.1 and Corollary 5.2
hold with [E), = L¥G)NT replacing [E],. The proofs are the same once we
observe that if (f.) is a norm bounded sequence in L'(G), then (¢([f.])) is
uniformly integrable.

The results that deal with existence of continuous linear functionals—
Corollaries 3.2, 3.4, and 3.5 —also generalize immediately to this situation if, in
addition to being strongly concave,
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$(1)= ¢ (log1)

where ¢ is convex on the real line. Then Jensen’s convexity theorem can be used
in place of the arithmetic-geometric mean inequality to prove an analogue of
Corollary 3.2, and the other results follow as before.

Added in Proof. Regarding Remark (b) following Corollary 5.2: it has been
pointed out to us by Professor N. T. Peck that V. Klee has given an example of a
metrizable linear topological space whose dual separates points, but does not
separate points of the completion (Exotic topologies for linear spaces, Proceed-
ings of Symposium on General Topology and its Relations to Modern Analysis,
Prague, 1961, pp. 238-249). It is not known, however, if this can happen for
Te(G) in the L* topology (0<p <1).

Finally, we thank the referee for simplifying the proof that spec u, C[spec i},
in Theorem 5.1.
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