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ABSTRACT 

Let G be an infinite compact abelian group, ~ a Borel measure on G with 
spectrum E, and 0 < p < I. We show that if/x is not absolutely continuous with 
respect to Haar measure, then L[(G), the closure in LP(G) of the E- 
trigonometric polynomials, does not have enough continuous linear functionals 
to separate points. If ts is actually singular, then L~(G) does not have any 
nontrivial continuous linear functionals at all. Our methods recover the classical 
F. and M. Riesz theorem, and a related several variable result of Bochner; they 
reveal the existence of small sets of characters that span LP(T), where T is the 
unit circle; and they show that the H p spaces of the "big disc algebra" have 
one-dimensional dual. 

Introduction 

If G is an infinite compact  abel ian group and  0 < p < 1, then the l inear  metric  

space LP(G) has no nontr iv ia i  con t inuous  l inear  functionals.  This suggests the 

following prob lem in ha rmonic  analysis: for which subsets E of the dual group of 

G does L~(G), the closure in LP(G) of the E-trigonometric polynomials on G, fail 
to have enough continuous linear functionals to separate points? In this paper  we 

show that it is sufficient for E to be the spect rum of a measure  on G that is not  

absolutely con t inuous  with respect to Haa r  measure.  Equiva len t ly :  i lL ~(G) has 

enough continuous linear [unctionals to separate points [or some 0 < p < 1, then 

every E-spectral measure on G is absolutely continuous (here " m e a s u r e "  means  

"finite,  regular  Borel  measure") .  

This  exhibits the classical F. and  M. Riesz theorem,  which states that every 

measure  on the circle with spect rum conta ined  in the positive integers must  be 

absolutely  cont inuous ,  as a consequence  of the fact that when 0 < p < 1 the 

LP-closure  of the space of t r igonometr ic  polynomials  with posit ive f requencies  
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still has enough continuous linear functionals to separate points. In fact our 

methods will provide an even simpler proof, using ideas which lead to a related 

theorem of Bochner about measures on the torus. 

Along the way it is necessary to prove the following result, which is actually 

our main theorem: if E is the spectrum of a measure on G that is singular with 

respect to Haar measure, then L[(G) has no nontrivial continuous linear 

functional for 0 < p  < 1. This result is of independent interest. It yields the 

existence of sets of integers having density zero for which the corresponding 

exponentials span a subset of LP(T) with trivial dual; it shows that the H p spaces 

of the "big disc algebra" have one dimensional dual when 0 < p < 1, and it 

explains a recent theorem of de Leeuw [4, theor. 3.1, p. 113] which asserts that if 

E is the spectrum of a measure on G that is singular with respect to Haar 

measure, then every co-finite subset of E spans a dense subspace of L ~(G) for 

0 < p < 1. We use de Leeuw's result in turn to show that the "modification sets" 

introduced by Rudin [13], [14] span dense subspaces of L P (G),  and this provides 

sets of integers having density zero for which the corresponding characters (i.e. 

exponentials) span a dense subspace of L P(T) for all 0 < p  < 1. In fact de 

Leeuw's paper [4] was the starting point of this investigation, and his methods 

play an important role in what follows. 

Of course none of this makes sense for p _-> 1, and all of it would be trivial if 

there were no infinite sets E for which L~(G) had enough continuous linear 

functionals to separate points. Fortunately, however, every infinite compact 

abelian group has such sets E in its dual. For example, when G = T (the circle 

group) it is well known that if E = (-+ nk) where (nk) is a sequence of positive 

integers with nk.~/nk > q > 1, then on the E-tr igonometric  polynomials the L 2 

and L p topologies coincide [15, Vol. I, theor. 8.4, p. 213]. More generally the 

same is true when G is a compact abelian group and E is a Sidon set in its dual 

group [12, theor. 5.7.7, p. 128]. Since every compact abelian group has an infinite 

Sidon set in its dual [12, sec. 5.7.6, p. 126], it follows that unless G is finite there 

will always be infinite sets E for which the LP-topology on L~(G)  is locally 

convex for 0 < p < 1, hence L~(G) will have enough continuous linear function- 

als to separate points. 

The paper is organized into five sections. Basic notations, definitions, and 

preliminary results occupy the first, singular measures and trivial duals the 

second, and H"  spaces of the big disc algebra the third. The fourth section 

contains de Leeuw's result, along with its application to modification sets; and 

the paper concludes with our generalization of the F. and M. Riesz theorem. 

It is a pleasure to thank Professors John D. Pesek of Michigan State 
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University, and Paul S. Muhly of the University of Iowa for many stimulating 

conversations about this material. In particular it was Muhly who suggested the 

applications to H p spaces of the big disc algebra. I also want to thank the 

Department of Mathematics at the University of Wisconsin-Madison for its 

hospitality while this paper was being written. 

1. Preliminaries 

In this paper G is always a compact abelian group with normalized Haar 

measure m and dual group F. We generally follow the notation and terminology 

of Rudin's book [12]; in particular we write (x,c~) instead of a(x) when x ~ G 

and a E F; dx instead of din(x); and LP(G) instead of LP(m). In contrast to 

[12], however, the index p always lies strictly between 0 and 1. 
The space of finite, regular, complex valued Borel measures on G is denoted 

by M(G), and its elements simply called "measures".  The subspace consisting of 

measures that are singular with respect to m is denoted by Ms(G). Henceforth 

the terms "absolutely continuous" and "singular" are always intended with 

respect to m. 

If p. E M(G) then /2 denotes the Fourier-Stieltjes transform of ~:  

f i ( a ) = J ( - x , a ) d ~ ( x )  (a in F), 

and the spectrum of /z  is the support of fi: 

spec~ = {a E F : f i ( a ) ~  0}. 

If E is a subset of F and spec/~ C E we say/.t is an E-spectral measure. These 

notions are transferred to functions in L ' ( G )  by identifying the function f with 

the measure f(x)dx. 
We will be particularly concerned with finite linear combinations of charac- 

ters, usually called trigonometric polynomials on G. A finite linear combination 

of characters taken from a fixed subset E of F is called an E-trigonometric 
polynomial, and the collection of all E-trigonometric polynomials is denoted by 

TE(G). In other words, T~(G) is the linear span of E. 

LP(G) is given its usual topology here: the one induced by the metric 

d(f, g) = Ill - g ll~ where 

II f fig = f I f(x)l dx. 

This metric turns LP(G) into a complete linear topological space which, unless G 

is finite, is not locally convex, and in fact has no nontrivial continuous linear 

functionals [3]. 
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For E a subset of F we denote the closure of T~(G) in LP(G) by L~(G). So 

L[(G) is the closed linear subspace of LP(G)  spanned by the characters E. 

It will be convenient to use the following terminology from functional analysis. 

If X is a linear topological space then the dual of X is the collection of 

continuous linear functionals on X. It is denoted by X',  and should not be 

confused with the dual group of G. We say a subset S of X '  separates the points of 

X if for every nonzero x in X there exists A in S with A ( x ) / 0 .  If X '  separates 

the points of X we say X has separating dual. If X ' =  {0} we say X has trivial 

dual. 
Finally we require the following two results. The first is a generalization due to 

Jean Bocl6 of a standard differentiation theorem, while the second is a well 

known result. For completeness we include proofs of both. 

LEMMA 1.1 [1, theor. II, p. 17]. Let ~ denote the collection of symmetric 

neighborhoods of 0 in G, directed downward by inclusion. For V in ~ let 

kv = Iv/m ( V), where Iv is the characteristic function of V( = 1 on V and 0 off V). 

If ix @ Ms(G) then the net (kv * IX : V E ~)  converges in Haar measure to zero. 

PROOF. Since [ kv * I~ I <-- kv * I t x I we may without loss of generality take IX 

to be a positive measure. Suppose e and a are >0 .  By the regularity and 

singularity of IX there exist sets K C U C G  with K compact, U open, and 

Ix(u) = Ix (G)= II, 

IX (U \ K )  < ea/2,  

m ( U ) < e / 2 .  

Define A in M(G)  by A(B)=IX(B  A K )  for B a Borel subset of G. Then 

/z = a + 0 where A is concentrated on K and 0 ( G ) <  ea/2. 
Choose V0 in ,9° such that K +  VoCU. The symmetry of Vo(Vo = -V, , )  

implies that (Vo+ t )A  K = Q whenever t f f  U, hence 

+ t) = + t} n K) 
k v * A ( t ) = m ( V + t )  m ( V + t )  

vanishes off U whenever V C Vo. So for V C Vo we have kv * Ix = kv * 0 off U, 

hence 

fo,u kv.ix(x)dx= fo,u kv*O(x)dx  

II k v II, II 0 II 

<=ea/2. 
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By Chebyshev's inequality: 

m{{kv*tZ >a}N(G\U)}<=e/2.  

So given e, a > 0 there exists Vo in 9 ° such that 

m{k, ,*~ >a}<=e/2+m(U)<e 

whenever V C V0. This completes the proof. 

LEMMA 1.2 (cf. [10, p. 30]). If V is a closed, translation invariant subspace of 
L ~(G) and h E L ~(G), then h * f E Vfor every f in V. In particular spec f C V for 
every f in V. 

PROOV. By the Hahn-Banach and Riesz representation theorems it is enough 

to show that if g in L=(G) annihilates V, then it annihilates h * V. So suppose 

g ~ L~(G) and 

f f(x)g dx = 0 (x) 

for all f in V. Then using the translation invariance of V and Fubini's Theorem: 

= fI*h(x)g(x)dx  

which is the desired result. 

In particular, taking h(x)= (x, a) for a U F we have 

f (a)a  = h * f e  V, 

so if a E spec f, then a @ V. This completes the proof. 

2. Singular measures and trivial duals 

Recall that G is a compact abelian group, and that 0 < p < 1. This section is 

devoted to the proof and first consequences of the following result. 

THEOREM 2.1. If /z E M , ( G ) ,  E = s p e c / x ,  and O < p < l ,  then L~(G) has 
trivial dual. 

PROOF. Suppose qb is a continuous linear functional on L~(G). Then qb is 

L '-continuous on the dense subspace TE(G) since the L J-topology is stronger 
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thereon than the LP-topology. By the Riesz and Hahn-Banach theorems there 

exists ,;b in L=(G) such that for each f in TE(G): 

(2.1) * ( f )  = f f (x)& ( -  x) dx = ~, f(a)~5 (a). 

So in order to show that • vanishes identically on L~(G) it is enough to check 

that ~ ( a ) =  0 for each a in E. 

This will be accomplished by applying qb to a net of test functions obtained by 

convolving the singular measure Ix with the approximate identity (kv : V E 9 °) 

that was considered in Lemma 1.1. Let fv = kv * tx. Then fv E L ~(G) C L ~(G), 

(2.2) [[fvll~<=]Ikvl[,llt x H=[I/z ]] ( v c g o ) ,  

and fv ~ 0  in Haar measure by Lemma 1.1. 

Now fix a in E and recall that our goal is to show that qS(a) = 0. Since the net 

of measures (kvdm : V E 5 p) converges in the weak star topology of M(G) to 
the unit mass at the identity of G, we have/¢v(c~)----> 1. Since both the topology of 

the complex plane and the topoh)gy of convergence in Haar measure on G are 

metrizable, we can choose a sequence (V,) from 9O so that simultaneously 

lcvo(a)---> 1 and g, = /v , - -*0  in measure. Now according to (2.2) the sequence 

(I g, [P) is uniformly integrable, and we have just seen that it converges to zero in 

measure. So Vitali's Convergence Theorem [7, theor. C, p. 108] shows that (g.) 

converges to zero in LP(G) (cf. [4, theor. 3.1, p. 113] where this is also the crucial 

step in the proof). The translation invariance of Haar measure insures that the 

same is true for the sequence of translates (g~)) for each t in G, where 

g~)(x)= g,(x + t) (x in G). 

We finish the proof by analysing the functions 

F,( t )=~(g~')  (t in G) ,  

recalling that since g, E L~(G), the same is true for g~). First of all, each F, is 

continuous on G, since translation of L p functions takes G continuously into 

LP(G), and qb is continuous. Next, for t in G: 

IF,(t)l<--II~ll tlg~)JIp <=ll~tl IIg, ll,<=llc~ll I1~t1 

for each n, so the sequence (F,) is uniformly bounded on G. Final/),, F.(t)---~O 
for each t in G since, as we have just noted, gO)---> 0 in LP(G) for each t. Thus 

(F,) is a uniformly bounded sequence of continuous functions on G that 

converges pointwise to zero, so by the bounded convergence theorem we have 
i~.(a)-+0.  Now a quick calculation shows that 
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F~ = kvo * tz *ok 

so recalling that /~v,(a)--~ 1: 

o = l i ra  
n 

which implies that ~ ( a ) =  0, since c~ E E --spec/z. This completes the proof. 

Note that when/z is the unit mass at the identity of G, then spec/z = F and we 

recover the fact mentioned in the Introduction that LP(G)  ' =  {0} whenever G is 

infinite. This result was first proved for the L p spaces of general non-atomic 

measures by M. M. Day [3]. 

We next illustrate how Theorem 2.1 can be used to produce examples of 

rather " thin"  sets E for which L~(G) has trivial dual. Recall that T denotes the 

circle group, and that the dual of T is identified with th6 group Z of integers by 

associating n E Z with the character to --~ to ~ (to E T). 

COROLLARY 2.2. There exist subsets E of Z having density zero for which 

L[(T)  has trivial dual (0 < p < 1). 

PROOF. We use Riesz products to produce measures /z ~ Ms(T) for which 

E = spec/z has density zero. Suppose (nk) is a sequence of positive integers with 

inf nk +1/nk > 3. Then it is well known [15, Vol. I, ch. 5, sec. 7] that the measures 

dp.,(t) = IeI (1 + cos nkt) dt/27r 
k - - I  

converge in the weak star topology of M(T)  to a singular measure p. whose 

spectrum consists of all finite sums E Oknk where Ok = 0, 1, or - 1. It is easy to 

check that this set has density zero, so the proof is complete. 

For the problems we are considering a measure of thinness that is perhaps 

better than "density zero"  is RE(N) = the maximum number of elements E has 

in common with an arithmetic progression of length N. Clearly ae (N)-< N;  and 

E has density zero if a~(N) = o(N) ,  but not conversely. Rudin [11, theor. 3.8, p. 

215] shows that given any function w(N)  ~ o~, the sequence (nk) in the proof of 

Corollary 2.2 can be chosen so that a~(N) < w(N).  Thus the statement of 

Corollary 2.2 can be refined to read: given w(N)  ~ oo there is a subset E of Z such 

that aE (N) < w (N), yet L ~(T) has trivial dual for all 0 < p < 1. 

3. H p spaces of the big disc algebra 

In this section we apply Theorem 2.1 to a situation that arises in the theory of 

uniform algebras. We continue to follow the notation and terminology of Rudin 



Vol. 29, 1978 S U B S P A C E S  OF L" (G):  0 < p < 1 255 

[12,ch. 8]. In particular recall that an abelian group F is ordered if there is a linear 

order -< on it such that a =</3 implies a + ,~ </3 + ,~ for all ,t in F [t2, sec. 8.1, 

p. 193]. The collection of non-negative elements of F will be denoted by F*. If G 

is a compact abelian group whose dual F is ordered, then we say the F ÷- 

trigonometric polynomials are of analytic type, and we write HP(G) instead of 

L~*(G). Note that these definitions depend in an essential way on the order 

chosen for F, and that this is suppressed in the notation. If we take G = T and 

order its dual group Z in the usual way, then H"(G) is the space of boundary 

functions of the usual Hardy space H p, and is in fact isometrically isomorphic to 

H e [5, theor. 3.3, p. 36]. 

We will need the following result from the theory of uniform algebras. 

LEMMA 3.1 [12, theor. 8.4, p. 206}. If G is a compact abelian group with 

ordered dual, and f is a trigonometric polynomial on G of analytic type, then 

I f(0) I _-< exp f log t / (x)  1 dx. 

This lemma and the arithmetic-geometric mean inequality yield: 

COROLLARY 3.2 [6, theor. 3.1, p. 124]. If  G and f are as above, then 

li(o) l IIi 

for all p > O. 

For the remainder of this section we concentrate on the following special case, 

which is described in detail in [6, ch. VIII. We take F to be a dense subgroup of 

the real line R, let Fd denote F in the discrete topology, and let G be the dual of 

F~. So G is a compact, connected abelian group with character group Fd. We give 

Fd the order it inherits from R. The uniform closure of the trigonometric 

polynomials of analytic type on G is an important function algebra called the 

"big disc algebra", and H e (G) can be regarded as the L p-closure of the big disc 

algebra. We are going to show that the dual space of HP(G) is one dimensional, 

in sharp contrast to the case G = T. This follows from Corollary 3.2 and the 

following result. 

THEOREM 3.3. If E is a subset of F that is relatively open in the topology of the 

real line, then L fz( G ) has trivial dual for 0 < p < 1. 

PROOF. According to Theorem 2.1 it is enough to find ~ ~ M,(G) with 

spec/z = E. This construction is completely standard, but to keep things 

reasonably self-contained we will give it in detail. 
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The idea is to transfer measures from R to G by means of the following 

homomorphism. For s in R define es in G ( =  the dual of Fd, recall) by 

(3.1) (o~,e~)= e '"S (a in F), 

and define h : R--~ G by 

(3.2) h(s)=e, (s in R) .  

Clearly h is a continuous homomorphism of R into G, and is one-to-one because 

F is dense in R ;  but h is not bicontinuous as a map from R onto h(R). 
Nevertheless h (R)  is sigma-compact, hence a Borel subset of G. 

I f / z  is a finite Borel measure on R, let p.~ = /zh  ', that is, 

/x~(B) = p.{h-'(B)} 

for each Borel subset B of G. Then #~ E M(G) and a straightforward 

calculation employing (3.1), (3.2), and the change of variable formula [7, theor. 

C, p. 163] yields 

(3.3) tic(a) = ft(a) (a in F), 

where on the left side of (3.3) we are viewing a as a character on G, and on the 

right side as a real number. 

The assumption on E is that E = F71 U where U is an open subset of R. 

Choose any finite Borel measure /.t on R with 

spec/z ={ t  in R : / 2 ( t ) ~ 0 } =  U. 

Then spec p.c = E by (3.3), so we will be done if we can show that p.G is singular 

with respect to the Haar  measure m on G. Since/x~ is concentrated on h (R)  it is 

enough to show that m {h (R)} = 0. 

This is easy. If K, is the closed interval in R between n and n + 1, then h(K,) 
is a compact subset of G, and 

h(R)= U h(Kn). 
r t E Z  

So we need only show that m {h(K,)} = 0 for each n. Suppose not. Then since h 

is a homomorphism and the K. ' s  are all translates of each other, so are the 

h(K,) ' s ,  hence they all have the same positive Haar measure. But the h (K , ) ' s  

are pairwise disjoint; because the K. ' s  are, and h is one-to-one. So m {h (R)} = 

~, which contradicts the fact that re(G)= 1. This completes the proof. 



Vol. 29, 1978 SUBSPACES OF LP(G):O<p < 1 257 

COROLLARY 3.4 

PROOF. 

Let 

For 0 < p  < 1 the dual space of l iP(G)  has dimension 1. 

It is enough to prove the result with T + = T~,~(G) in place of HP(G). 

Ao(f)= ~(0) (f in T+). 

By Corollary 3.2 the linear functional A,, is LP-continuous on T ÷. Suppose A is 

any L"-continuous linear functional on T ÷. Since E = F+\{0} is relatively open 

in F, Theorem 3.3 asserts that Lf~(G) has trivial dual: in particular A must vanish 

on the dense subspace T~(G). But TE(G) is the null space of A,,, so A is a scalar 

multiple of Ao, and the proof is complete. 

A similar result holds when F ÷ is replaced by a closed interval in F, and 

suggests an interesting problem. 

COROLLARY 3.5. Suppose a, b E F with a < b. Let E = F N [a, b]. Then the 

dual space of L Pe( G ) has dimension two when 0 < p < 1. 

PROOF. For f in TE(G) let 

A . ( f ) = f ( a )  and & ( f ) = f ( b ) .  

We claim that both these linear functionals are LP-continuous. For given f in 

TE(G) define F in T,.,(G) by 

f ( x ) = ( x , b ) f ( x )  (x in G) ,  

where b is now viewed as a character on G. Using Corollary 3.2 on the analytic 

polynomial F:  

/Ae(f)l = [ f(b ) t = i P(O) l <= ll Fllp = fillip 

which establishes the continuity of Ab. A similar argument works for A,. 

Let Eo = E \{a, b}. Then Eo is relatively open in F, so Theorem 3.3 implies that 

T~,(G) = ker ~.° n ker a~ 

has trivial dual in the L"-topology.  Thus any L ' -cont inuous  linear functional on 

TE(G) must vanish on the null spaces of both A, and &, and must therefore be a 

linear combination of these two functionals. This completes the proof. 

It would be of interest to know if a similar result holds when E is a finite 

disjoint union of closed intervals in F. If E, is the interior of such an E (relative 

to F), then Theorem 3.3 insures that L~,, has trivial dual, so the argument given 

above shows that the dimension of [L~(G)] '  is _-< twice the number of these 
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intervals. However  it is not clear that the endpoints of these intervals induce 

continuous linear functionals on L"E(G), even when there are only two intervals. 

4. Modification sets span LP(G) 

In this section we use Theorem 2.1 to prove the following theorem of de 

Leeuw, and we use de Leeuw's result to show that rather thin sets of characters 

can span dense linear subspaces of LP(G). Here G is any compact abelian 

group. 

TaEOREM 4.1 [4, theor. 3.1, p. l l3].  SupposelzEMs(G),E=speci.L,  andF 

is a finite subset of E. Then E \ F spans a dense linear subspace of L [( G ) for all 
0 < p < l .  

PROOF. Theorem 2.1 asserts that TE(G) has no nontrivial LP-continuous 

linear functional, so the same is true of the quotient space TE(G)/X, where X is 

the LP-closure of TE\v(G) in T~(G). We want to show that X = TE(G). In any 

case X has finite codimension in T~(G), so if it is not the whole space, then 

TE(G)/X is a nontrivial finite dimensional Hausdorff linear topological space, 

hence is isomorphic to the complex Euclidean space C" for some n > 0 [8, theor. 

7.3, p. 59], and therefore has a nontrivial continuous linear functional. But this is 

impossible, so X = TE(G), and the proof is complete. 

A subset M of F is called a modification set if for every f in L ' (G)  there exists 

/., in Ms(G) such that/2 : f off M. That is, M is a modification set if every f in 

L'(G)  can be converted into a singular measure by modifying its Fourier 

transform only on M. Rudin [13], [14] has proved that rather small modification 

sets exist in many groups. In particular he has found modification sets in Z of 

density zero [14]. 

COROLLARY 4.2. If M CF is a modification set then M spans a dense linear 

subspace o]: L ~ ( G ) for all 0 < p  < 1. 

PROOF. It is enough to show that each character not already in M belongs to 

LUG) .  Fix a in F / M  and choose /~ in Ms(G) so that fi = & off M;  hence 

E specp. CM O{a}. Letting E = spec#  we have from Theorem 4.1: 

a E L~(G)= L~,I~t(G)CL~G),  

which completes the proof. 

This result, along with Rudin's construction of modification sets in Z of density 

zero yields: 
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COROLLARY 4.3. There exist subsets E = {nk} of Z having density zero for 
which the exponentials {e '"ke} span a dense linear subspace of LP(T) for all 

0 < p < l .  

REMARKS. (a) This last corollary, in some ways a disturbing complement to 

Corollary 2.2, shows that L~(G) may have trivial dual simply because it 

coincides with LP(G),  even if E is rather small. This raises a general question: 

given a set E of characters, what is F fq L~(G)? We will say more about this 

problem in the next section. In general it appears to be quite difficult. 

(b) There is also a related question: irE is the spectrum of a singular measure, 
is L§(G)  linearly homeomorphic with LP(G)? 

5. Separating duals and absolutely continuous measures 

In this section we use Theorem 2.1 and de Leeuw's original proof of Theorem 

4.1 to generalize the F. and M. Riesz theorem. The following notation will be 

convenient: for E CF and 0 < p  < 1, let [E]p = LPe(G)N F. Note that: 

(a) E C [ E I p .  

(5.1) (b) If F = [E]p then L~(G)= L~(G). 

(c) [E, n E2lp c [E,]. n [G]~. 

In this notation Theorem 4.1 asserts that [E]p = [E\F]p whenever E is the 

spectrum of a singular measure and F is a finite subset of E ;  and Corollary 4.2 

shows that [M]p = F for every modification set M. 

For b~ in M(G)  let/z~ and p,, be respectively the absolutely continuous and 

singular parts of t z with respect to the Haar measure m. The main result of this 

section is: 

THEOREM 5.1. If  ~ E M(G)  then [spec/z ], contains both spec/z~ and spec/z, 

for all O < p < l. 

PROOF. (cf. de Leeuw [4, theor. 3.1, p. 113]. We use the approximate identity 

(kv : V E 5 p) that appeared in Lemma 1.1 and in the proof of Theorem 2.1. A 

routine argument shows that kv *f---~f in L~(G) for each f in L ' (G) .  

Let E = spec/z and write dtz , , (x)=f(x)dx where f E  L'(G).  Then as in the 

proof of Theorem 2.1 there is a sequence (V,) in ow such that 

(5.2) [[ k vo * f - f [[, ---~ 0 

and 
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(5.3) II kv, • Is, lip -- '  0. 

Thus the sequence kv° *Is converges to f in L p (G). Since each kv. *Is belongs 

to L~(G), it also belongs to LP(G), hence so does f. 

Let (f) denote the closure in L'(G) of the linear span of the translates of f. 

Then (f) is a closed, translation invariant subspace of L ~(G) which contains f, so 

by Lemma 1.2 it also contains s p e c f =  specIs,. Since f ~  LP(G) so is every 

translate of f, hence ( f ) C L ~ ( G ) .  Thus spec Is~ lies in LP(G), and therefore in 

[E]p. Since both fi and t2, vanish outside [E]p so does /2~ =/2 - /2 , ,  and this 

completes the proof. 

An immediate consequence of this result and Theorem 2.1 is the following, 

which is the "generalized F. and M. Riesz theorem" mentioned in the 

Introduction. 

COROLLARY 5.2. Suppose E C F ,  0 < p < l ,  and F = [ E ] r  If Te(G) has 
enough L p-continuous linear functionals to separate points, then every E-spectral 

measure on G is absolutely continuous. 

PROOF. If IS is an E-spectral measure on G that is not absolutely continuous, 

then by Theorem 5.1 

S = spec p.~ C [spec ~ ]p C [E]p = F 

so T,(G)CTF(G). By Theorem 2.1 the space Ts(G) has no non-trivial L ~- 

continuous linear functionals, so each LP-continuous linear functional on T¢(G) 

must vanish on Ts(G). Since the latter space is non-trivial, it follows that TF(G) 

does not have enough LP-continuous linear functionals to separate points. This 

completes the proof. 

REMARKS. (a) Corollary 5.2 clearly implies that i fL~(G) has separating dual 
for some 0 < p < 1, then every U-spectral measure on G is absolutely continuous. 

For example when G = T and E is the non-negative integers, we noted in 

section 3 that L~(T) is isometrically isomorphic to the Hardy space H p of the 

open unit disc. Since H p has separating dual [5, ch. 7, p. 118], so does L fz(T), and 

we have a proof of the F. and M. Riesz theorem. In a few moments we will give a 

simpler proof in which TE(T) is shown directly to have enough LP-continuous 

linear functionals to separate points, and the existence of H p is completely 

ignored. 

(b) We do not know if L~(G) must have separating dual whenever TE(G), 

taken in the LP-topology, does. More generally we do not know if the dual of a 
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topological vector space must separate points whenever it separates the points of 

a dense subspace. 

Corollary 5.2 raises once again the problem mentioned in Remark (a) of 

section 4. Restated in the notation of this section it is: given E C F and 0 < p < 1, 

find [E]p. Not much seems to be known about this problem other than the few 

results we have already mentioned, and the following one which we need to 

efficiently recover the F. and M. Riesz, and Bochner theorems. 

LEMMA 5.3. If  G is a compact abelian group with ordered dual F, then 

[F+]p = F + for every O<p < 1. 

PROOF. Suppose a < 0 and f is a trigonometric polynomial on G of analytic 

type. Then 

F ( x )  = ( x ,  - 1 

is also a trigonometric polynomial of analytic type, with F(0) = - 1  and 

I F I --- If  - a I on G. These observations, along with Corollary 3.2, yield 

II o< - f II. = II F tl. e I P(O) t -- 1 

so dist (a, HP(G))= 1. In particular, 

aft. HP(G) 71 r = [r+lp 

and the proof is complete. 

We next give a sufficient condition for T~(G) to have enough LP-continuous 

linear functionals to separate points. In what follows, E - a  is the translate of 

the set E CF by the character a, not the set-theoretic difference. 

LEMMA 5.4. Suppose G is a compact abelian group with ordered dual F, and E 

is a subset of F + such that E - a has at most finitely many negative elements for 

each a in E. Then T~ ( G ) has enough L p-continuous linear functionals to separate 

points for each 0 < p < 1. 

PROOF. According to Corollary 3.2 the linear functional 

A,,(f)=f(O) ( f in  r , ( G) )  

is LP-continuous on T~(G), so it is also LP-continuous on TEu~(G) for each 

finite subset F of F, since the latter space contains the former as a subspace of 

finite codimension. In particular A,, is LP-continuous on TE ~(G), say with norm 

M~. Suppose f E TE(G). Then 
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F ( x ) = ( x , - a ) f ( x )  (x in G) 

is an ( E -  a)-trigonometric polynomial, hence 

I f ( a ) l  = I '6(0) 1 -< M .  II f lip = Ma ]1 [ lip, 

which shows that the linear functional 

Ao ([) = f ( a )  (f in TI-(G)) 

is L p-continuous on TE (G) for each a in E. Since these functionals separate the 

points of TE(G), the proof is complete. 

The F. and M. Riesz theorem now follows immediately from the last three 

results. 

COROLLARY 5.5 (F. and M. Riesz [9], Rudin [12, theor. 8.2.1, p. 198], Duren 

[5, theor. 3.8, p. 41]). I f  tz E M ( T )  and / 2 ( n ) = 0  for all n <0 ,  then I-t is 

absolutely continuous with respect to Lebesgue measure on T. 

PROOF. Take G = T, m = normalized Lebesgue measure on T, F = Z, and 

E = F + = Z + in Lemmas 5.3 and 5.4. It follows from these lemmas that [E]p = E 

and TE(T) has enough LP-continuous linear functionals to separate points for 

each 0 < p < 1. This, along with Corollary 5.2, completes the proof. 

REMARK. In addition to Theorem 5.1 the main element in this proof of the F. 

and M. Riesz theorem is Lemma 3.1, which is a non-trivial result in the theory of 

function algebras. However for the special case just considered it is an 

immediate consequence of the subharmonicity of I f ( z ) I  p where f is a polynomial 

in the complex variable z. 

These ideas also provide another proof of a theorem of Bochner. This time the 

generality of Lemma 3.1 is used in a more essential way. In what follows the 

ordered pair (m, n) E Z 2 is identified with the character (~, r / ) ~  ~"~"  on T :. 

COROLLARY 5.6 [2], [12, 

angular opening less than 

absolutely continuous with 

theor. 8.2.5, p. 201]. Suppose S is a plane sector of 

7r radians. I f  ~ E M(T 2) and spec/z C S, then i ~ is 

respect to Lebesgue measure on T 2. 

PROOF. Without loss of generality we may assume that S has vertex at the 

origin. Since the sides of S make an angle of less than 7r radians we have 

S = lq~ NIIo where H~ and Ho are half-planes bounded by the lines containing 

the sides of S. Let E, F,, and Fo be the intersections with Z 2 of S, II~, and lqo 

respectively. Then F,~ is the set of positive elements for an ordering of  Z 2 (see 
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[12, sec. 8.1]), so Lemma 5.3 insures that [F , ]p  = F,,. The same is true for F~, and 

since E = Fa N F~ it follows from (5.1) that 

that is, [E]p = E. 

So we need only show that TE(T 2) has enough LP-continuous linear function- 

als to separate points, by the above results and Corollary 5.2. To see this, 

consider Z 2 in the ordering induced by any half-plane which contains S \{0} in its 

interior and whose boundary is a line of irrational slope through the origin. It is 

geometrically clear that for such an ordering the set E obeys the hypotheses of 

Lemma 5.4, and this completes the proof. 

REMARKS. (a)In [11, theor. 5.7] Rudin generalizes the F. and M. Riesz 

theorem as follows: if E is the union of a A(1) set with the positive integers, then 
every E-spectral measure on the circle is absolutely continuous. We do not know if 

this result can be obtained from Corollary 5.2. That is, we do not know if the 

space of [E]p-trigonometric polynomials has enough LP-continuous linear 

functionals to separate points. 

(b) Finally it should be observed that the results of this paper extend to 

certain Or l i czmtype  spaces, with exactly the same proofs. More precisely, 

suppose th is a non-negative, continuous, strictly increasing concave function on 

[0,oo) which vanishes only at the origin. Then 4~ is automatically subadditive, and 

the space L * ( G )  consisting of (equivalence classes of) m-measurable complex 

valued functions f on G with 

Ilfll-- f  (lfl)dm 

is a complete linear topological space in the metric 

d(f ,g)-- l] f  -g l [ .  

Of course LP(G) is  just the case th(t) = t ° ( 0 < p  < 1). Suppose qb is strongly 
concave, that is, ¢b(t)/t---~0 as t--*~. Then Theorems 2.1, 3.3, 4.1, and Corollary 
4.2 all hold with L*E(G) replacing L~(G);  while Theorem 5.1 and Corollary 5.2 

hold with [E] ,  = L*E(G) fq F replacing [E]p. The proofs are the same once we 

observe that if (f,) is a norm bounded sequence in L'(G),  then (~ ( t f ,  t)) is 

uniformly integrable. 

The results that deal with existence of continuous linear funct ionals--  

Corollaries 3.2, 3.4, and 3 .5 - -a l so  generalize immediately to this situation if, in 

addition to being strongly concave, 
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qS(t) = ~b (log t) 

where ~ is convex on the real line. Then Jensen's convexity theorem can be used 

in place of the arithmetic-geometric mean inequality to prove an analogue of 

Corollary 3.2, and the other results follow as before. 

Added in Proof. Regarding Remark (b) following Corollary 5.2: it has been 

pointed out to us by Professor N. T. Peck that V. Klee has given an example of a 

metrizable linear topological space whose dual separates points, but does not 

separate points of the completion (Exotic topologies for linear spaces, Proceed- 
ings of Symposium on General Topology and its Relations to Modern Analysis, 
Prague, 1961, pp. 238-249). It is not known, however, if this can happen for 
TE(G) in the L e topology ( 0 < p  < 1). 

Finally, we thank the referee for simplifying the proof that spec/z~ C [spec p, ]p 

in Theorem 5.1. 
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